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a b s t r a c t

The motion of the tippe top on a horizontal plane is considered taking into account sliding friction
within the Contensou model. The tippe top is modelled by two spherical segments rigidly joined by
a rod directed along the common axis of symmetry of the segments. The dimensions of the spherical
segments and the rod are chosen so that, as the axis of symmetry deviates from the upward vertical,
the tippe top is supported on the plane at a point on one segment up to a certain critical value and
at a point on the other segment at larger deviations (at points on both segments at the critical value).
The motion of the tippe top is described by different equations in different regions of configuration
space, and the motion is accompanied by impacts on the boundary of these regions. An effective poten-
tial of the system is constructed, and the type of its critical points is investigated. Poincaré–Chetayev
bifurcation diagrams and generalized Smale diagrams are constructed for steady motions. Plots of the
steady-state precessional motions have a discontinuity on the boundary between the regions indicated.

© 2010 Elsevier Ltd. All rights reserved.

The tippe top (or Chinese top) consists of a spherical segment of large radius and a cylindrical shaft on the flat part of the segment.
When the tippe top is supported at a point on the segment of large radius (when the shaft is pointing up), its equilibrium position is stable,
but if it is spun rapidly in this position, the top quickly flips over onto the shaft. Then the rotation rate drops, and the top gradually returns
to be supported at a point on the spherical segment. The stability of rotations with a vertically oriented axis of dynamical symmetry has
been investigated.1 A complete analysis of the occurrence and stability of all the steady motions based on a modified version of Routh’s
theory, in which the top was modelled by a dynamically symmetrical sphere with a displaced centre of mass, has been given.2 A global
qualitative investigation of the dynamics of such a model of a tippe top on a plane with sliding friction and pivoting friction has been
conducted.3 The main difference between the problem considered here and the problem previously investigated in Ref. 3 is as follows: the
tippe top is modelled here by a rigid body bounded by a non-convex surface consisting of two spherical segments (the smaller segment
models the shaft); the configuration space is divided into two regions, in which the motion of the body is described by different equations,
and the motion on the boundary between these regions is accompanied by impacts. The method of investigation is similar to the method
previously used in Ref. 3. The analytical results obtained in this paper supplement the numerical investigations of this problem performed
in Ref. 4.

1. Statement of the problem

Consider a heavy rigid body on a horizontal plane. The body (which we will call a top) consists of two spherical segments with radii r1
and r2, which complement one another in the sense that while the first segment is formed by rotating a 2(� − �) arc of a circle about the
axis of symmetry, the other is formed by rotating a 2� arc. The two segments are rigidly joined by a rod that passes through their centres
O1 and O2 (Fig. 1).

The geometrical parameters of the top �, r1, r2 and l (l is the distance between the centres of the segments O1 and O2) are related by
the expression
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Fig. 1.

To be specific, we will assume that r1 > r2 and that � ∈ (0, �/2). The top is then supported on the horizontal plane at a point on the first
spherical segment if � ∈ [0, � − �) and at a point on the other spherical segment if � ∈ (� − �, �], and the top is supported on the plane at
two points if � = � − �. Here � is the angle of deviation of the axis of symmetry (the rod) from the upward vertical.

Let the centre of mass S of the top lie on its geometrical axis of symmetry O1O2 at a distance c1 from the point O1 outside of the segment
O1O2. Then O2S = c2 = l + c1. We will assume that this axis is also the axis of dynamic symmetry of the top, and we will use J1, J2 = J1 and J3
to denote the principal central moments of inertia of the top and m to denote its mass.

We introduce the dimensionless parameters of the top

Here

Let e = O1O2/O1O2 be the unit vector of the axis of symmetry of the top, � the unit vector of the upward vertical, v the velocity of
the centre of mass of the top, and � its angular velocity. We will denote cos � = (e, �) by x ∈ [−1, 1]. When x ∈ �1 = (−cos �, 1], the top is
supported on the plane at a point on the first segment, and when x ∈ �2 = [−1, −cos �), it is supported at a point on the other segment. Let
C = C1 be the point of support on the plane (i = 1 if x ∈ �1, and i = 2 if x ∈ �2). Then

2. The equations of motion of the top and their properties

Assuming that, in addition to the normal reaction, dry friction forces act on the top at its point of support on the plane within the
Contensou model (i.e., neglecting the pivoting friction torque), we write the equations of motion of the top relative to its principal central
axes of inertia

(2.1)

where J = diag(J1, J1, J3) is the central tensor of inertia of the top, N is the normal reaction at the point of support and F is the force of sliding
friction.

The first equation in (2.1) expresses the theorem of momentum of the top, the second equation expresses the theorem of angular
momentum about the centre of mass, the third equation expresses the condition of constancy of the vector � in the absolute frame of
reference, and the fourth equation expresses the condition of motion of the sphere without bouncing. If the friction force is specified in
the form F = F(v, �, �, N), system (2.1) is closed with respect to the variables v, �, � and N.

Equations (2.1) describe the motion of the top when x /= −cos �: if x ∈ �i, then N = Ni, r = ri, and F = Fi (i = 1, 2). When x = −cos �, the
right-hand sides of the first two equations in (2.1) should be changed, respectively, to

and the single last equation in (2.1) (for i = 1 or i = 2) should be replaced by two such equations (for i = 1 and i = 2).
Let x /= −cos �. Then the sliding velocity of the top is specified by the relation u = v + [�, r] (r = ri for x ∈ �i, i = 1, 2). In this case1,5 (F,

u) < 0 if u /= 0, and F = 0 if u = 0. Thus, the total mechanical energy of the top is the non-increasing function

(2.2)

where the energy H is constant in motions without sliding and decreases in motions with sliding.
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Consider the “normalized” projection K of the angular momentum J� of the top onto the radius vector r of its point of support on the
plane (when x /= cos �)

and its derivative with respect to time by virtue of system (2.1)

(2.3)

Hence it follows that Jellett’s integral exists

(2.4)

for x /= cos � in the corresponding region x ∈ �i (i = 1, 2) of the Poisson sphere S2 = {� ∈R3 : �2 = 1}.
Now suppose that x = −cos � (in this case (r1, �) = (r2, �)). Then formulae (2.2) and (2.3) take the form

(2.5)

Thus, when x = −cos �, there are no integrals of the form (2.4): K̇i /= 0 (i = 1, 2). In this case (see the second equation in (2.1)) we have

3. Analysis of the dynamics of the tippe top

For all x /= −cos � we can introduce the effective potential2,3,6

It has the form3

and is defined on the Poisson sphere S2 with the exception of the parallel (�, e) = −cos �. Here, as above, all the quantities that are defined
for x = (�, e) ∈ �i have the subscripts i = 1, 2.

Thus, the effective potential V(�, k) is specified in different parts of the Poisson sphere by different formulae:

According to a modified version of Routh’s theory,2 the critical points of the functions fi(x): �i → R correspond to steady motions of
the top: the minimum points correspond to stable motions, and the maximum points correspond to unstable motions.3

The functions f1 and f2 always have the critical points at x = 1 and x = −1, respectively, which correspond to uniform rotations of the
top about the vertically oriented axis of symmetry (at x = 1 the top is supported on the plane at a point on the spherical segment of larger
radius, and at x = −1 it is supported at a point on the spherical segment of smaller radius), and at the corresponding values of the parameter
ki (the constant of the Jellett’s integral) the critical points x0 ∈ (−1, 1), which correspond to precessional motions of the top. The latter are
determined from the equation f ′

i
(x) = 0, which can be represented in the form

(3.1)

The character of the critical points x = ±1, as well as the number and character of the critical points x0 ∈ (−1, 1) that satisfy Eq (3.1),
depend significantly both on the parameters a and bi of the top and on the values of p2

i
. (Note that the functions �i(x) were determined in

the intervals �i, respectively.) We will next provide a detailed description of the investigation of the behaviour of the functions �i(x) in
relation to the parameters (for simplicity, we will temporarily omit the subscript i).

4. Investigation of equation of precessional motions

We first note that since a non-negative quantity appears on the left-hand side of Eq. (3.1), precessional motions occur only in the
part of the interval [−1, 1] where the function �(x) takes non-negative values. The equation of the asymptote of the function �(x) is
x = xas = b/(1 − a). The asymptote lies in the band �1 × R if b < cos � (a − 1) (then xas < 0, and the function �(x) takes positive values for
xas < x < 1) or if b < 1 − a (in this case xas > 0, and the function �(x) takes positive values for −1 < x < xas). The asymptote lies in the band
�2 × R if cos � (a − 1) < b < a − 1 (and �(x) > 0 for xas < x < cos �). If b < cos � (a − 1), the function �(x) takes negative values over the entire
interval �2; if b < a − 1, the function �(x) is positive over the entire interval �2.
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We will investigate the nature of the monotonicity of the function �(x). The derivative of this function has the form

It is clear that the first factor is always positive in the interval (−1, 1). Consider the behaviour of the factor y(x) in this interval. The
graph of the function y(x) is a parabola, whose branches are directed downward, with apex at the point xas. Note that y(xas) = a(1 − a − b2).
Consequently, for values of the parameters that obey the inequality a > 1 − b2, the function y(x) is negative on the entire number axis, and
the function �(x), therefore, decreases monotonically.

Next, suppose that xas > 1, i.e., 1 − b < a < 1. Then y(x) < 0 over the entire interval (−1, 1) if y(1) < 0. It has one root x* ∈ �1 if y(1) > 0 and
y(−cos �) < 0 (then y(x) < 0 for x < x* and y(x) > 0 for x > x*; therefore, x* corresponds to the minimum of the function �(x)). Conversely, y(x) > 0
over the entire interval �1 if y(1) > 0 and y(−cos �) < 0. The values of y(1) and y(−cos �) depend on a and b:

In the (b, a) plane the y(1) = 0 and y(−cos �) = 0 curves pass through the point a = 1, b = 0 and have the common tangent a = 1 in it. It is
also clear that the y(−cos �) = 0 curve in the region a > 1 − b on the (b, a) plane always lies below the branch of the y(1) = 0 curve passing
through this region.

Now consider the region of parameters 1/2 < a < 1 − b. In this case the apex of the parabola y = y(x) is at the following location: 0 < xas < 1.
The function y(x) changes sign at a certain point x* ∈ (−cos �, xas) if y(−cos �) < 0, since we always have y(xas) = a(1 − a − b2) > 0 in this
parameter region. In this case y(x) increases in the interval (−cos �, xas) and x* is the minimum point of the function �(x).

The properties of the functions �i(x) just described enable us to demarcate the regions �a, �b, . . . �g on the plane of parameters (b1,
a) of the top (Fig. 2). In the region �a the function �1(x) is positive and decreases in the interval (b1/(1 − a), 1], and �1(x) → +∞ as x →
b1/(1 − a). In the region �b the function �1(x) is positive and decreases at x ∈ �1. In the regions �c and �d we have �1(x) > 0 when x ∈ �1,
and �1(x) has a minimum at the point x*. In addition, �(1) > �(−cos �) in the region �c, and �(1) < �(−cos �) in the region �d. These regions
are separated by the curve

In the region �e the function �1(x) is positive and increases monotonically when x ∈ �1. In the regions �f and �g the function �1(x)
is positive in the interval (−cos �, b1/(1 − a)) and tends to infinity as x → b1/(1 − a). In addition, in the region �f the function �1(x) is
monotonic, and in the region �g it has a minimum at x*. The regions �i, �j, and �h are demarcated on the (a, b2) parameter plane (Fig. 3).
We have �2(x) > 0 in the region �i when x ∈ (b2/(1 − a), −cos �] and in the region �j when x ∈ �2 (this function is monotonic in these
intervals), and �2(x) → +∞ as x → b2/(1 − a) in the region �i. In the region �h we have �2(x) < 0 when x ∈ �2.

The next section qualitatively describes the generalized Poincaré–Chetayev and Smale bifurcation diagrams for each of the separate
regions.

Fig. 2.
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Fig. 3.

Fig. 4.
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5. Bifurcation diagrams

We will examine the generalized Poincaré–Chetayev and Smale bifurcation diagrams for the two-sphere top. Graphs of the precessional
motions x = (�, e) const, specified by Eq. (3.1) (denoted by �1 and �2), as well as the straight lines of the uniform rotations �+ = {x = 1}
and �− = {x = 1}, are constructed as functions of the values of Jellett’s integrals p2

i
on the Poincaré–Chetayev diagrams. The thick solid lines

indicate stable motions, and the thick dashed lines indicate unstable motions. Note that on the Poincaré–Chetayev diagrams each of the
intervals �i has its own value of the constant p2

i
.

On the generalized Smale diagrams (in the (p2, h) plane, where h is the initial value of the total mechanical energy), the uniform rotations
at x = ±1 correspond to the straight lines

The precessional motions correspond to curves that are parametrically specified by the relations

(xi is a parameter that can be eliminated).

Fig. 5.
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For convenience in the ensuing presentation, we also introduce the following quantities

(x* is the minimum point of the function �1(x) in the interval �1).
We will give a qualitative description of the diagrams for each of the parameter regions specified. The most interesting diagrams are

presented in the figures.

1. The case when (a, b1) ∈ �a, (a, b2) ∈ �i (Fig. 4). The uniform rotations at the lowest position of the centre of mass �+ are stable only for
small values of the angular velocity (p2

1 < p2
1+). At the point of loss of stability, the precession curve �1 branches off from �+ and then

tends monotonically to the horizontal asymptote x = xas; precessional motions with support at a point on the segment of large radius
occur when x ∈ (b1/(1 − a), 1) and are always stable. The uniform rotations at the highest position of the centre of mass �− are unstable.
Precessional motions with support at a point on the segment of small radius (curve �2, which has a horizontal asymptote) occur when
x ∈ (−cos �, b2/(1 − a)) and are always stable.

2. The case when (a, b1) ∈ �b, (a, b2) ∈ �j (Fig. 5). The uniform rotations at the lowest position of the centre of mass �+ are only stable
for small values of the angular velocity (p2

1 < p2
1+). At the point of the loss of stability, the precession curve �1 branches off from �+

and then continues when p2
1+ < p2

2 < p2
10. All the precessional motions when x ∈ �1 are stable. The uniform rotations at the highest

Fig. 6.
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position of the centre of mass �− are stable for large values of the angular velocity (p2
2 > p2

2−). The precessional motions when x ∈ �2

(curve �2) occur when p2
20 < p2

2 < p2
2– and are always stable.

3. The case when (a, b1) ∈ �a, (a, b2) ∈ �j. The properties of the diagrams in the �1 part are the same as in Case 1. The properties of the
diagrams in the �2 part are the same as in Case 2.

4. The case when (a, b1) ∈ �a, (a, b2) ∈ �h. The properties of the diagrams in the �1 part are the same as in Case 1. The uniform rotations
at the highest location of the centre of mass �− are always unstable. There are no precessional motions with support at a point on the
spherical segment of small radius in the top.

5. The case when (a, b1) ∈ �b, (a, b2) ∈ �i. The properties of the diagrams in the �1 part are the same as in Case 2. The properties of the
diagrams in the �2 part are the same as in Case 1.

6. The case when (a, b1) ∈ �d, (a, b2) ∈ �j (Fig. 6). The uniform rotations at the lowest position of the centre of mass �+ are only stable
for small values of the angular velocity (p1

2 < p2
1+). At the point of the loss of stability, the precession curve �1 branches off from �+

and then continues when p2∗ < p2
1 < p2

1+. For each value Jellett’s integral p2
1 from the interval (p*

2 < p2
10), there are two precessional

motions, one of which is stable, and the other is not. The precessional motions are stable for x* < x < −cos �. Here and in all the following
cases the properties of the diagrams in the �2 part are the same as in Case 2.

7. The case when (a, b1) ∈ �c, (a, b2) ∈ �j. The uniform rotations at the lowest position of the centre of mass �+ are only stable for small
values of the angular velocity (p2

1 < p2
1+). At the point of loss of stability, the precession curve �1 branches off from �+ and then

continues when p2∗ < p2
1 < p2

10. For each value of Jellett’s integral p2
1 from the interval (p2∗ < p2

1+), there are two precessional motions,
one of which is stable, and the other is not. The precessional motions are stable when x* < x < −cos �.

8. The case when (a, b1) ∈ �e, (a, b2) ∈ �j. The uniform rotations at the lowest position of the centre of mass �+ are stable only for small
values of the angular velocity (p2

1 < p2
1+). At the point of loss of stability, the precession curve �1 branches off from �+ and then

continues when p2
10 < p2

1 < p2
1+. All the precessional motions are unstable.

9. The case when (a, b1) ∈ �f, (a, b2) ∈ �j. The uniform rotations at the lowest position of the centre of mass are always stable. Precessional
motions occur when p2

1 > p2
10, where −cos � < x < b1/(1 − a), and the curve �1 tends monotonically to the horizontal asymptote. All the

precessional motions are unstable.
10. The case when (a, b1) ∈ �g, (a, b2) ∈ �j. The uniform rotations at the lowest position of the centre of mass are always stable. Precessional

motions occur when p2
1 > p2∗ , where −cos � < x < b1/(1 − a), and the curve �1 tends monotonically to the horizontal asymptote. The

precessional motions are stable when x* < x < −cos �.

Note that in the problem considered the graphs of the precessional motions on the Poincaré–Chetayev and Smale bifurcation diagrams
are discontinuous, unlike the analogous diagrams in the simpler problem of the motion of a tippe top bounded by a spherical surface.3 This
is because there are precessional motions for different values of the constant of Jellett’s integral p2 and the energy h when � = � − � − 0
and � = � − � + 0.
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